首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5443篇
  免费   559篇
  国内免费   526篇
化学   3353篇
晶体学   144篇
力学   213篇
综合类   22篇
数学   130篇
物理学   2666篇
  2023年   65篇
  2022年   117篇
  2021年   141篇
  2020年   191篇
  2019年   136篇
  2018年   148篇
  2017年   181篇
  2016年   222篇
  2015年   196篇
  2014年   260篇
  2013年   531篇
  2012年   327篇
  2011年   462篇
  2010年   269篇
  2009年   385篇
  2008年   372篇
  2007年   371篇
  2006年   295篇
  2005年   246篇
  2004年   245篇
  2003年   185篇
  2002年   221篇
  2001年   103篇
  2000年   103篇
  1999年   77篇
  1998年   84篇
  1997年   66篇
  1996年   74篇
  1995年   67篇
  1994年   72篇
  1993年   57篇
  1992年   43篇
  1991年   31篇
  1990年   19篇
  1989年   22篇
  1988年   27篇
  1987年   11篇
  1986年   17篇
  1985年   12篇
  1984年   14篇
  1983年   7篇
  1982年   11篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   4篇
  1976年   5篇
  1974年   3篇
  1973年   2篇
排序方式: 共有6528条查询结果,搜索用时 31 毫秒
41.
The first principle computational screening was performed to investigate the effect of selected dopants for Li3PS4 sulfide solid electrolyte on its ionic conductivity and stability toward moisture. The results suggest that substitution P5+ using isovalent cations whose electronegativity (EN) value is closer to the value of S has more significant effects on the ionic conductivity, whereby W5+ and Sb5+ can improve most. Similarly, aliovalent cation substitutions with compensating changes in the lithium-ion concentration, particularly those with a lower oxidation state and higher EN, such as Cu2+, effectively enhance the lithium-ion conductivity in this structure. For cation dopants, it is found that ionic conductivity improvement of Li3PS4 is the synergetic effect of EN and oxidation number of the dopant as well as the material's lattice parameter change. Oxides of the considered cation dopants can also improve the ionic conductivity of the material but have much lower lithium-ion conductivity than the cases of cation dopants. However, the metal oxide dopants, particularly those derived from soft Lewis' acid cations, show a marginal improvement in moisture stability of the Li3PS4 electrolyte. The effect of halides and metal halide dopants on the lithium-ion conductivity and moisture stability of Li3PS4 electrolyte are also studied. It is found that metal halides are more effective than any other dopants in improving the ionic conductivity of Li3PS4.  相似文献   
42.
Electrical double-laye r capacitors are widely concerned fo r their high power density,long cycling life and high cycling efficiency.However,their wide application is limited by their low energy density.In this study,we propose a simple yet environmental friendly method to synthesize cobalt and nitrogen atoms co-doped porous carbon(CoAT-NC) material.Cobalt atoms connected with primarily pyridinic nitrogen atoms can be uniformly dispersed in the amorphous carbon matrix,which is benefit for improving electrical conductivity and density of states of the carbon material.Therefore,an enhanced perfo rmance is expected when CoAT-NC is served as electrode in a supercapacitor device.CoAT-NC displays a good gravimetric capacitance of 160 F/g at 0.5 A/g combing with outstanding capacitance retention of 90% at an extremely high current density of 100 A/g in acid electrolyte.Furthermore,a good energy density of30 Wh/kg can be obtained in the organic electrolyte.  相似文献   
43.
Low-cost silicon microparticles(SiMP),as a substitute for nanostructured silicon,easily suffer from cracks and fractured during the electrochemical cycle.A novel n-type conductive polymer binder with excellent electronic and ionic conductivities as well as good adhesion,has been successfully designed and applied for high-performance SiMP anodes in lithium-ion batteries to address this problem.Its unique features are attributed to the stro ng electron-withdrawing oxadiazole ring structure with sulfonate polar groups.The combination of rigid and flexible components in the polymer ensures its good mechanical strength and ductility,which is beneficial to suppress the expansion and contraction of SiMP s during the charge/discharge process.By fine-tuning the monomer ratio,the conjugation and sulfonation degrees of the polymer can be precisely controlled to regulate its ionic and electronic conductivities,which has been systematically analyzed with the help of an electrochemical test method,filling in the gap on the conductivity measurement of the polymer in the doping state.The experimental results indicate that the cell with the developed n-type polymer binder and SiMP(~0.5 μm) anodes achieves much better cycling performance than traditional non-conductive binders.It has been considered that the initial capacity of the SiMP anode is controlled by the synergetic effect of ionic and electronic conductivity of the binder,and the capacity retention mainly depends on its electronic conductivity when the ionic conductivity is sufficient.It is worth noting that the fundamental research of this wo rk is also applicable to other battery systems using conductive polymers in order to achieve high energy density,broadening their practical applications.  相似文献   
44.
The purpose of this work is to study the desalination of brackish water using a new ion exchange membrane, made from sulfochlorated polyethersulfone (Cl‐PES), and crosslinked using aminated polyethersulfone (NH2‐PES) as a crosslinking reagent. This membrane, named ClNH2 membrane, has been obtained by reaction between Cl‐PES with 1.3 SO2Cl groups per monomer unit and 0.2 equivalent amount of NH2‐PES. ClNH2 membrane has been characterized in terms of contact angle, transport number, intrinsic conductivity, and water uptake (as a function of temperature). Electrodialysis performances of the newly synthetized membranes have been measured using an electrodialysis cell at a laboratory scale and compared to commercial membranes. All the experiments have been performed using synthetic brackish water solutions prepared from sodium chloride salts with different concentrations (varying from 0.5 to 5.0 g/L). The concentration of different water samples obtained has been found to be below the amount recommended by the World Health Organization (WHO) for drinking water.  相似文献   
45.
In the present work, Cr doped tellurium dioxide nanostructures (CTO NS)(1 wt %, 6 wt %, 8 wt % and 12 wt %) synthesized by co precipitation method and characterized by CV, UV-Visible, SEM, XRD, XPS spectroscopic analysis. Electron beam deposited thin film of CTO NS having 12 wt % of Cr exhibited EGFET-pH sensitivity of 62.03 mV/pH at 250 °C in buffer solutions of pH 6–12, linearity 0.9345, drift rate of 1.12 mV/h and deviation of 0.01145 as compared with 1 wt %, 6 wt % and 8 wt % of CTO NS.  相似文献   
46.
A novel cellulose acetate-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer was prepared via free radical polymerization for the first time. The chemical structure of the graft copolymer was confirmed using FT-IR, 1H NMR and EDX. The TGA and DSC investigated the thermal changes. Factors affecting the grafting process were studied and various grafting characteristic parameters such as grafting efficiency (%), grafting yield (%) and add-on value (%) were determined. Flexible membranes based on different graft copolymer compositions were fabricated by simple solution casting. Physicochemical properties including ion exchange capability (IEC), water uptake (WU) and proton conductivity (σ) were evaluated. These membranes demonstrated higher IEC, WU and conductivity than the pristine CA. The maximum proton conductivity of the CA-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer membrane (68%; Add-on %) was found to be 6.44 × 10−3 S/cm compared with 0.035 × 10−3 S/cm of the pristine CA. Thus, the appropriate graft copolymer composition will allow fine-tuning of the physical characteristics and led to several potential applications, such as polyelectrolyte fuel cells membranes or biodiesel production.  相似文献   
47.
金属有机骨架(MOFs)是由金属离子或簇与有机配体以配位键组装而成的晶态多孔材料,其高的孔隙率及功能可设计性使其广泛应用于各种领域。然而,传统MOFs多数电导率非常低,这严重制约了其在电学相关领域的发展。近年来,导电金属有机骨架尤其是二维导电金属有机骨架(2D ECMOFs)材料因其结构中独特的π-π堆积及π-d共轭作用而呈现出半导体甚至类金属的电子输运性质而受到广泛关注,已在传感器、电子器件、电催化、电池和超级电容器等电学和能源相关领域展现出潜在的应用价值。本文将从2D ECMOFs的导电机理、结构、合成方法及应用等方面对近几年该领域的重要进展进行综述,并对其未来发展的挑战和机遇提出展望。  相似文献   
48.
This study reports a remarkably facile method to synthesize novel ionogels with imidazolium cycle crosslinks based on polyamidoamine (PAMAM) dendrimers via one‐pot, modified Debus–Radziszewski reaction in ionic liquid 1‐ethyl‐3‐methylimidazolium acetate ([EMIM][OAc]). High room temperature ionic conductivity (up to 6.8 mS cm−1) is achieved, and more remarkably, it can still exceed 1 mS cm−1 when the dendrimer content reached 70% because PAMAM dendrimers are completely amorphous with many cavities and the newly formed imidazolium crosslinks contains ions. The elastic modulus of these ionogels can exceed 106 Pa due to the newly‐formed rigid imidazolium crosslinks. Crucially, these ionogels are robust gels even at temperatures up to 160 °C. Such novel ionogels with high ionic conductivity, tunable modulus, and flexibility are desirable for use in high‐temperature flexible electrochemical devices.  相似文献   
49.
In this paper, three organic intercalating agents containing cations [hexadecyl trimethyl ammonium bromide (CTAB), poly(acrylamide‐co‐diallyldimethylammonium chloride), and quaternized polyethyleneimine] are used to prepare intercalated montmorillonites (MMT) by ion‐exchange method. Then the modified MMTs are doped with vinylbenzyl chloride and styrene copolymer [poly(vinylbenzyl chloride‐co‐styrene)] for fabricating composite anion‐exchange membranes (AEM). Fourier transform infrared, X‐raydiffraction, thermogravimetric analysis, scanning electron microscopy, and Mastersizer laser particle size analyzer are employed to characterize the structure and morphology of MMTs and AEMs. The successful intercalation of MMTs is approved, and the MMT intercalated by CTAB shows an interlayer distance of 2.31 nm. The properties of the composite membranes including water uptake, mechanical property, and ionic conductivity are investigated. Among all the AEMs, the composite membrane containing MMT sheets with CTAB demonstrates better compositive performances. It presents an ionic conductivity of 2.09 × 10?2 S cm?1 at 80°C and good alkaline solution stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
50.
The self-consistent field theory has been employed to numerically study the response of bi-disperse flexible polyelectrolyte (PE) brushes grafted on an electrode to electric fields generated by opposite surface charges on the PE-grafted electrode and a second parallel electrode. The numerical study reveals that, under a positive external electric field, the shorter and negatively charged PE chains are more responsive than the longer PE chains in terms of the relative changes in their respective brush heights. Whereas under a negative external electric field, the opposite was observed. The total electric force on the grafted PE chains was calculated and it was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The underlying mechanism was unraveled through analyzing the total electric field across the two oppositely charged electrodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号